

Hermon Laboratories Ltd. Harakevet Industrial Zone, Binyamina 30500, Israel Tel. +972-4-6288001 Fax. +972-4-6288277 E-mail: mail@hermonlabs.com

TEST REPORT

EIRP AND SPURIOUS EMISSIONS

ACCORDING TO: EN 300 440-2 V1.4.1: 2010, EN 300 440-1 V1.6.1: 2010; EN 301 511 V12.1.1: 2015, EN 301 908-2 V6.2.1:2013

EMF ASSESSMENT

ACCORDING TO: EN 62311:2008

FOR:

Pointer Telocation Inc.

Vehicle Tracking equipment with GPS/GNSS receiver and one of GSM/UMTS modules

- 1) CR300B 2G,
 - Part numbers: CT7801201-000, CT7801211-000
- 2) CR300 2G, Part number: CT7801205-000
- 3) CR300B 3G EU, Part numbers: CT7801202-000, CT7801212-000
- 4) CR300 3G EU, Part number: CT7801206-000

This report is in conformity with ISO/ IEC 17025. The "A2LA Accredited" symbol endorsement applies only to the tests and calibrations that are listed in the scope of Hermon Laboratories accreditation. The test results relate only to the items tested. This test report shall not be reproduced in any form except in full with the written approval of Hermon Laboratories Ltd.

Table of contents

1	Applicant information	3
2	Equipment under test attributes	3
3	Manufacturer information	3
4	Test details	3
5	Tests summary	4
6	EUT description	5
6.1	General information	5
6.2	Ports and lines	5
6.3	Support and test equipment	5
6.4	Test configuration	5
6.5	EUT test positions	6
7	Receiver test according to EN 300 440-2 standard	8
7.1	Effective radiated power of receiver spurious emission	8
8	Transmitter parameters according to EN 301 511 standard	14
8.1	Output power of carrier	14
8.2	Effective radiated power of transmitter spurious emission	21
9	Transmitter parameters according to EN 301 908-2 standard	32
9.1	Maximum output power of middle carrier	32
9.2	Effective radiated power of transmitter spurious emission	39
10	EMF Assessment according to EN 62311 standard	52
10.1	Limits	52
10.2	Basic restrictions for electric, magnetic and electromagnetic fields (0 Hz to 300 GHz)	52
10.3	Reference level	52
10.4	Low power exclusion level	52
10.5	RF exposure assessment	53
10.6	Evaluation of RF exposure	54
11	Transmitter photographs	55
11.1	External photos of 2G module	55
11.2	Internal photos of 2G module	56
11.3	External photos of 3G module	58
11.4	Internal photos of 3G module	59
12	APPENDIX A Test equipment and ancillaries used for tests	61
13	APPENDIX B Measurement uncertainties	62
14	APPENDIX C Test laboratory description	63
15	APPENDIX D Specification references	63
16	APPENDIX E Test equipment correction factors	64
17	APPENDIX F Abbreviations and acronyms	68
18	APPENDIX G Manufacturer's declaration of identity	69

1 Applicant information

Client name:	Pointer Telocation Inc.
Address:	7715 NW 48th Street, Suite 395, Doral FL 33166
Telephone:	001 (305) 903-6634
Contact name:	Mr. Jay Pico

2 Equipment under test attributes

Product name:	Tracking vehicle product	
Product type:	Transceiver including a GPS receiver and one of GSM modules	
	 CR300B 3G EU, P/N CT7801202-000 or CR300B 2G, P/N CT7801201-000 	
Hardware version:	В	
Software release:	43	
Receipt date	01-Oct-15	

Note: according to manufacturer's declaration of identity provided in Appendix G of the test report, the EUT part numbers CT7801201-000 & CT7801211-000, as well as CT7801202-000 & CT7801212-000 are electronically / electrically / mechanically identical and the reason of the change is marketing purposes; the EUT part number CT7801206-000 is the same as CT7801212-000 but without internal battery; the EUT part number CT7801205-000 is the same as CT7801211-000 but without internal battery. That is why the EUT part numbers CT7801201-000 and CT7801202-000 only were tested.

3 Manufacturer information

Manufacturer name:	Pointer Telocation Ltd.		
E-Mail:	itamarg@pointer.com		
Contact name:	Mr. Itamar Gohary		

4 Test details

Project ID:	27317
Location:	Hermon Laboratories Ltd. Harakevet Industrial Zone, Binyamina 30500, Israel
Test started:	30-Sep-15
Test completed:	26-Oct-15
Test specification(s):	EN 300 440-2 V1.4.1: 2010, EN 300 440-1 V1.6.1: 2010;
	EN 301 511 V12.1.1: 2015, EN 301 908-2 V6.2.1:2013
	EN 62311: 2008

5 Tests summary

Test	Status			
EN 300 440-1 V1.6.1				
Receiver parameters				
Spurious radiation				
Receiver spurious emission (radiated)	Pass			
EN 301 511 V12.1.1				
Transmitter parameters				
Equivalent isotropically radiated power	Pass			
Spurious emission (radiated)	Pass			
EN 301 908-2 V6.2.1				
Transmitter parameters				
Equivalent isotropically radiated power	Pass			
Spurious emission (radiated)	Pass			
EN 62311: 2008, Section 4- Conformity Assessment Methods				
Far field calculation – Annex A	Pass			
Near field calculation – Annex A	Not required			
Simulation with/without a phantom – Annex B	Not required			
Numerical modelling – Annex C	Not required			
Body/limb current – Annex D	Not required			
SAR – Annexes E, C	Not required			
E and H measurement – Annex F	Not required			
Source modelling – Annex G	Not required			
Direct measurement of physical properties: Contact current – Annexes D, E, F	Not required			

The test results relate only to the items tested. Pass/ fail decision was based on nominal values.

	Name and Title	Date	Signature
Tested by:	Mrs. E. Pitt, test engineer	October 26, 2015	RH
Reviewed by:	Mrs. M. Cherniavsky, certification engineer	March 14, 2016	Chur
Approved by:	Mr. M. Nikishin, EMC and Radio group manager	March 15, 2016	ft o

6 EUT description

6.1 General information

The EUT is a tracking vehicle product which includes the GSM module CR300B 3G EU operating in 1920-1980 MHz band or CR300B 2G operating in 1710-1785 MHz band and GPS receiver operating in 1575-1610 MHz band.

6.2 Ports and lines

Port type	Port description	Connected from	Connected to	Qty.	Cable type	Cable length
Power	DC	DC power supply	EUT	1	Unshielded	Less than 3 meter

6.3 Support and test equipment

Description	Manufacturer	Model number	Serial number
PC	Lenovo	2518-4PG	25184PG

6.4 Test configuration

6.5 EUT test positions

Photograph 6.5.1 EUT in X-axis orthogonal position

Photograph 6.5.2 EUT in Y-axis orthogonal position

Photograph 6.5.3 EUT in Z-axis orthogonal position

Test specification:	EN 300 440-2 section 5.4.3, Receiver spurious emission (radiated)			
Test procedure:	est procedure: EN 300 440-1 V1.6.1 Section 8.3.3/8.3.4			
Test mode:	Compliance	- Verdict: PASS		
Date(s):	30-Sep-15 - 22-Oct-15			
Temperature: 23 °C	Air Pressure: 1012 hPa	Relative Humidity: 48 %	Power Supply: 12 VDC	
Remarks:				

7 Receiver test according to EN 300 440-2 standard

7.1 Effective radiated power of receiver spurious emission

7.1.1 General

This test was performed to measure radiated spurious emissions from the EUT. Specification test limits are given in Table 7.1.1.

Table 7.1.1 Radiated spurious emission test limits

Frequency, MHz	ERP of spurious, dBm	Equivalent field strength limit @ 3m, dB(μV/m)*		
25 - 1000	- 57.0 (2 nW)	40.35		
1000 – 10 th harmonic	- 47.0 (20 nW)	50.35		
* Equivalant field stron	ath limit was calculated fr	com maximum allowed EPP of spurious as follow		

*- Equivalent field strength limit was calculated from maximum allowed ERP of spurious as follows: E=sqrt(30×1.64×P)/r, where P is ERP in Watts and r is antenna to EUT distance in meters.

7.1.2 Test procedure for spurious emission field strength measurements

- **7.1.2.1** The EUT was set up as shown in Figure 7.1.1, energized and the performance check was conducted.
- **7.1.2.2** The specified frequency range was investigated with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360⁰, the measuring antenna height was swept throughout the specified in Table 7.1.2 range in both, vertical and horizontal, polarizations.
- 7.1.2.3 The worst test results (the lowest margins) were recorded in Table 7.1.2 and shown in the associated plots.

Test specification:	EN 300 440-2 section 5.4.3, Receiver spurious emission (radiated)				
Test procedure:	EN 300 440-1 V1.6.1 Section 8.3.3/8.3.4				
Test mode:	Compliance				
Date(s):	30-Sep-15 - 22-Oct-15	verdict: PASS			
Temperature: 23 °C	Air Pressure: 1012 hPa	Relative Humidity: 48 %	Power Supply: 12 VDC		
Remarks:					

Figure 7.1.1 Setup for spurious emission field strength measurements

Photograph 7.1.1 Setup for spurious emission field strength measurements

Test specification:	EN 300 440-2 section 5.4.3	EN 300 440-2 section 5.4.3, Receiver spurious emission (radiated)			
Test procedure:	EN 300 440-1 V1.6.1 Section	EN 300 440-1 V1.6.1 Section 8.3.3/8.3.4			
Test mode:	Compliance	Vardiat	DASS		
Date(s):	30-Sep-15 - 22-Oct-15	veruict.	FA33		
Temperature: 23 °C	Air Pressure: 1012 hPa	Relative Humidity: 48 %	Power Supply: 12 VDC		
Remarks:					

Table 7.1.2 Spurious emission field strength test results in receive mode

Frequency, Field strength,	Limit,	Margin,	RBW,	Antenna	Antenna	Turn-table position**,
		Double	e ridged gu	ide (above 10	DO MHz)	
TEST ANTENNA TYPE:		Biconil	og (25 MH	lz – 1000 MHz)	
VIDEO BANDWIDTH:		≥ Reso	plution ban	dwidth		
		above	1000 MHz	:: 1.0 MHz (3 d	B RBW)	
RESOLUTION BANDWIDTH:		Peak (25 MH	above 100 z – 1000 N	0 MHz) /IHz: 120 kHz (6 dB RBW)	
DETECTOR USED:		Peak /	Quasi-pea	ak (25 – 1000 N	MHz)	
TEST ANTENNA HEIGHTS RANGE	Ξ:	1.0 – 1	.8 m			
EUT HEIGHT:		1.5 m				
TEST DISTANCE:		3 m				
INVESTIGATED FREQUENCY RAI	NGE:	25 – 1	7000 MHz			
EUT ANTENNA:		Integra	al			
ASSIGNED FREQUENCY RANGE:		1575-1	610 MHz			

Frequency,	Field strength,	Limit,	Margin,	RBW,	Antenna polarization	Antenna	Turn-table position**,
MHz	dB(μV/m)	dB(μV/m)	dB*	kHz		height, m	degrees
No spurious emission was found							

Verdict: Pass

*- Margin = Field strength of spurious – calculated field strength limit.

**- EUT front panel refer to 0 degrees position of turntable.

Reference numbers of test equipment used

HL 2432	HL 2697	HL 2780	HL 4347	HL 4721	HL 4932	

Full description is given in Appendix A.

Test specification:	EN 300 440-2 section 5.4.3, Receiver spurious emission (radiated)				
Test procedure:	EN 300 440-1 V1.6.1 Section	EN 300 440-1 V1.6.1 Section 8.3.3/8.3.4			
Test mode:	Compliance	Vardiat	DAGG		
Date(s):	30-Sep-15 - 22-Oct-15	verdict.	FA33		
Temperature: 23 °C	Air Pressure: 1012 hPa	Relative Humidity: 48 %	Power Supply: 12 VDC		
Remarks:					

lot 7.1.1 Radiated emission measurements in 25 - 1000 MHz range

Test specification:	EN 300 440-2 section 5.4.	EN 300 440-2 section 5.4.3, Receiver spurious emission (radiated)			
Test procedure:	EN 300 440-1 V1.6.1 Section	EN 300 440-1 V1.6.1 Section 8.3.3/8.3.4			
Test mode:	Compliance	Vardiaty DASS			
Date(s):	30-Sep-15 - 22-Oct-15	veruici.	FASS		
Temperature: 23 °C	Air Pressure: 1012 hPa	Relative Humidity: 48 %	Power Supply: 12 VDC		
Remarks:					

Plot 7.1.3 Radiated emission measurements in 3.0 - 6.0 GHz range

TEST SITE: OPERATIONAL MODE: ANTENNA POLARIZATION: TEST DISTANCE: Fully anechoic chamber Receive Vertical and Horizontal 3 m

Test specification:	EN 300 440-2 section 5.4.3, Receiver spurious emission (radiated)			
Test procedure:	EN 300 440-1 V1.6.1 Section 8.3.3/8.3.4			
Test mode:	Compliance	Vordict	DASS	
Date(s):	30-Sep-15 - 22-Oct-15	verdict.	FA33	
Temperature: 23 °C	Air Pressure: 1012 hPa	Relative Humidity: 48 %	Power Supply: 12 VDC	
Remarks:				

Test specification:	Equivalent isotropically radiated power			
Test procedure:	EN 301 511 Section 5.3.5			
Test mode:	Compliance	Vordict	DAGG	
Date(s):	30-Sep-15 - 22-Oct-15	verdict.	FA33	
Temperature: 23 °C	Air Pressure: 1012 hPa	Relative Humidity: 48 %	Power Supply: 12 VDC	
Remarks: 2G module				

8 Transmitter parameters according to EN 301 511 standard

8.1 Output power of carrier

8.1.1 General

This test was performed to measure equivalent isotropically radiated power emanated by transmitter at carrier frequency. Specification test limits are given in Table 8.1.1.

Table 8.1.1 Output power limit

Assigned frequency band,	EIF	RP	Equivalent field strength limit @ 3m,
MHz	W	dBm	dB(µV/m)*
1710- 1785 MHz	1	30	125.23

*- Equivalent field strength limit was calculated from maximum allowed EIRP of carrier as follows: E=sqrt(30×P)/r, where P is EIRP in Watts and r is antenna to EUT distance in meters.

8.1.2 Test procedure for field strength measurements

- **8.1.2.1** The EUT was set up as shown in Figure 8.1.1, energized and the performance check was conducted.
- **8.1.2.2** The field strength of the EUT carrier frequency was measured with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360⁰, the measuring antenna height was swept throughout the range, specified in Table 8.1.2, in both vertical and horizontal polarizations.
- 8.1.2.3 The worst test results with respect to the limits were recorded in Table 8.1.2 and shown in the associated plots.

8.1.3 Test procedure for substitution EIRP measurements

- **8.1.3.1** The test equipment was set up as shown in Figure 8.1.2 and energized.
- **8.1.3.2** RF signal generator was set to the EUT carrier frequency and the RF output level was preliminary adjusted to produce the same field strength as it was measured from the EUT.
- **8.1.3.3** The test antenna height was swept throughout the specified in Table 8.1.2 range to find maximum emission from substitution antenna and RF signal generator output was fine adjusted to produce the same field strength as it was measured from the EUT.
- **8.1.3.4** The EIRP was calculated as a sum of signal generator output power in dBm and antenna gain in dBi reduced by cable loss in dB.
- 8.1.3.5 The above procedure was performed in both horizontal and vertical polarizations of the test antenna.
- **8.1.3.6** The worst test results with respect to the limits were recorded in Table 8.1.3 and shown in the associated plots.

Test specification:	Equivalent isotropically radiated power			
Test procedure:	EN 301 511 Section 5.3.5			
Test mode:	Compliance	Vardiat	DASS	
Date(s):	30-Sep-15 - 22-Oct-15	verdict.	FA33	
Temperature: 23 °C	Air Pressure: 1012 hPa	Relative Humidity: 48 %	Power Supply: 12 VDC	
Remarks: 2G module				

Figure 8.1.1 Setup for carrier field strength measurements

Photograph 8.1.1 Setup for carrier field strength measurements

Test specification:	Equivalent isotropically radiated power			
Test procedure:	EN 301 511 Section 5.3.5			
Test mode:	Compliance	Vordict	DV66	
Date(s):	30-Sep-15 - 22-Oct-15	verdict:	FA00	
Temperature: 23 °C	Air Pressure: 1012 hPa	Relative Humidity: 48 %	Power Supply: 12 VDC	
Remarks: 2G module				

Figure 8.1.2 Setup for substitution EIRP measurements

Test specification:	Equivalent isotropically radiated power			
Test procedure:	EN 301 511 Section 5.3.5			
Test mode:	Compliance	Vordict	DV66	
Date(s):	30-Sep-15 - 22-Oct-15	verdict.	FA33	
Temperature: 23 °C	Air Pressure: 1012 hPa	Relative Humidity: 48 %	Power Supply: 12 VDC	
Remarks: 2G module				

Table 8.1.2 Transmitter carrier field strength

ASSIGNED FREQUENCY RANGE: TEST SITE: TEST DISTANCE: EUT HEIGHT: TEST ANTENNA HEIGHTS RANGE: DETECTOR USED: VIDEO BANDWIDTH: TEST ANTENNA TYPE: MODULATION: EUT POSITION: 1710-1785 MHz Fully anechoic chamber 3 m 1.5 m 1.0 – 1.8 m Peak 3 MHz Double ridged guide (above 1000 MHz) GMSK 3 ortogonal positions (see Note)

Frequency, MHz	Field strength, dB(μV/m)	Limit, dB(μV/m)	Margin, dB*	RBW, kHz	Antenna polarization	Antenna height, m	Turn-table position**, degrees
Mid carrier frequency (Channel number 698)							
1747.5	124.1	125.23	-1.13	1000	Horizontal	1.5	134

Note: Maximum value was obtained in the EUT Z-axis position

*- Margin = Field strength – calculated field strength limit.

**- EUT front panel refer to 0 degrees position of turntable.

Table 8.1.3 Transmitter carrier output power

TEST DISTAI SUBSTITUTIO TEST ANTEN DETECTOR I VIDEO BAND SUBSTITUTIO	NCE: ON ANTENN INA HEIGHT JSED: DWIDTH: ON ANTENN	IA HEIGH 'S RANG IA TYPE:	ίΤ: Ε:	3 m 1.5 m 1.0 – 1.8 m Peak 3 MHz Double ridged quide (above 1000 MHz)						
Frequency, MHz	Field strength, dB(μV/m)	RBW, kHz	Antenna polariz.	RF generator output, dBm	Ant gain, dBi	Cable loss, dB	EIRP, dBm	Output power	Limit, dBm	Verdict
Mid carrier frequency (Channel number 698)										
1747.5	124.1	1000	Horiz.	29.5	5.56	5.6	29.46	27.46	30	Pass

*-Output power, dBm=EIRP, dBm – Antenna gain (G=2 dBi)

Reference numbers of test equipment used

HL 0567	HL 0661	HL 2432	HL 3615	HL 3818	HL 4114	HL 4276	HL 4278		
Full descripti									

Full description is given in Appendix A.

Test specification:	Equivalent isotropically r	Equivalent isotropically radiated power					
Test procedure:	EN 301 511 Section 5.3.5						
Test mode:	Compliance	Vordiot	DV66				
Date(s):	30-Sep-15 - 22-Oct-15	verdict.	PASS				
Temperature: 23 °C	Air Pressure: 1012 hPa	Relative Humidity: 48 %	Power Supply: 12 VDC				
Remarks: 2G module							

Plot 8.1.1 Transmitter carrier field strength at mid frequency, vertical antenna polarization, X-axis position

Plot 8.1.2 Transmitter carrier field strength at mid frequency, horizontal antenna polarization, X-axis position

Test specification:	Equivalent isotropically radiated power					
Test procedure:	EN 301 511 Section 5.3.5					
Test mode:	Compliance	Vordiot	DASS			
Date(s):	30-Sep-15 - 22-Oct-15	verdict:	FA33			
Temperature: 23 °C	Air Pressure: 1012 hPa	Relative Humidity: 48 %	Power Supply: 12 VDC			
Remarks: 2G module						

Plot 8.1.3 Transmitter carrier field strength at mid frequency, vertical antenna polarization, Y-axis position

Plot 8.1.4 Transmitter carrier field strength at mid frequency, horizontal antenna polarization, Y-axis position

Test specification:	Equivalent isotropically radiated power					
Test procedure:	EN 301 511 Section 5.3.5					
Test mode:	Compliance	Vordiot	DASS			
Date(s):	30-Sep-15 - 22-Oct-15	verdict:	FA33			
Temperature: 23 °C	Air Pressure: 1012 hPa	Relative Humidity: 48 %	Power Supply: 12 VDC			
Remarks: 2G module						

Plot 8.1.5 Transmitter carrier field strength at mid frequency, vertical antenna polarization, Z-axis position

Plot 8.1.6 Transmitter carrier field strength at mid frequency, horizontal antenna polarization, Z-axis position

Test specification:	Effective radiated power of transmitter spurious emissions					
Test procedure:	EN 301 511 Sections 5.3.16, 5	EN 301 511 Sections 5.3.16, 5.3.17				
Test mode:	Compliance	Vordict	DASS			
Date(s):	30-Sep-15 - 22-Oct-15	verdict.	FA33			
Temperature: 23 °C	Air Pressure: 1012 hPa	Relative Humidity: 48 %	Power Supply: 12 VDC			
Remarks: 2G module						

8.2 Effective radiated power of transmitter spurious emission

8.2.1 General

This test was performed to measure radiated spurious emissions from the EUT. Specification test limits are given in Table 8.2.1.

	Оре	erating mode	Standby mode		
Frequency, MHz	ERP of spurious, dBm	Equivalent field strength limit @ 3m, dB(µV/m)*	ERP of spurious, dBm	Equivalent field strength limit @ 3m, dB(µV/m)*	
30 - 880	- 36	61.38	- 57	40.38	
880-915	-36	61.38	-59	38.38	
915-1000	-36	61.38	-57	40.38	
1000 - 1710	- 30	67.38	- 47	50.38	
1710-1785	- 36	61.38	-53	44.38	
1785 - 4000	- 30	67.38	- 47	50.38	

Table 8.2.1 Radiated spurious emission test limits

*- Equivalent field strength limit was calculated from maximum allowed EIRP of spurious as follows: E=sqrt(30×P)/r, where P is EIRP in Watts and r is antenna to EUT distance in meters.

8.2.2 Test procedure for spurious emission field strength measurements in transmit mode

- 8.2.2.1 The EUT was set up as shown in Figure 8.2.1, energized and the performance check was conducted.
- 8.2.2.2 The EUT was adjusted to produce maximum available for end user RF output power.
- **8.2.2.3** The specified frequency range was investigated with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360⁰, the measuring antenna height was swept throughout the specified in Table 7.4.2 range in both, vertical and horizontal, polarizations.
- 8.2.2.4 The worst test results (the lowest margins) were recorded in Table 8.2.2 and shown in the associated plots.

8.2.3 Test procedure for spurious emission field strength measurements in idle mode

- **8.2.3.1** The EUT was set up as shown in Figure 8.2.1, energized and the performance check was conducted.
- **8.2.3.2** The specified frequency range was investigated with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360⁰, the measuring antenna height was swept throughout the specified in Table 7.4.4 range in both, vertical and horizontal, polarizations.
- 8.2.3.3 The worst test results (the lowest margins) were recorded in Table 8.2.4 and shown in the associated plots.

8.2.4 Test procedure for substitution ERP measurements of spurious emission

- **8.2.4.1** The test equipment was set up as shown in Figure 8.2.2 and energized.
- **8.2.4.2** RF signal generator was set to the frequency of investigated spurious emission and the RF output level was preliminary adjusted to produce the same field strength as it was measured from EUT.
- **8.2.4.3** The test antenna height was swept throughout the specified in Table 7.4.2, Table 7.4.4 range to find maximum emission from substitution antenna and RF signal generator output was fine adjusted to produce the same field strength as it was measured from EUT.
- 8.2.4.4 The above procedure was performed in both, horizontal and vertical, polarizations of the test antenna.
- **8.2.4.5** The ERP of spurious emissions was calculated as a sum of signal generator output power in dBm and antenna gain in dBd reduced by cable loss in dB.
- 8.2.4.6 The above procedure was repeated at the rest of investigated frequencies.
- **8.2.4.7** The worst test results (the lowest margins) were recorded in Table 8.2.3.

Test specification:	Effective radiated power of transmitter spurious emissions						
Test procedure:	EN 301 511 Sections 5.3.16, \$	EN 301 511 Sections 5.3.16, 5.3.17					
Test mode:	Compliance	Vardiati	DV66				
Date(s):	30-Sep-15 - 22-Oct-15	veraict.	PA55				
Temperature: 23 °C	Air Pressure: 1012 hPa	Relative Humidity: 48 %	Power Supply: 12 VDC				
Remarks: 2G module							

Figure 8.2.1 Setup for spurious emission field strength measurements

Photograph 8.2.1 Setup for spurious emission field strength measurements

Test specification:	Effective radiated power of transmitter spurious emissions					
Test procedure:	EN 301 511 Sections 5.3.16,	EN 301 511 Sections 5.3.16, 5.3.17				
Test mode:	Compliance	Vardiati	DASS			
Date(s):	30-Sep-15 - 22-Oct-15	veraici.	PASS			
Temperature: 23 °C	Air Pressure: 1012 hPa	Relative Humidity: 48 %	Power Supply: 12 VDC			
Remarks: 2G module						

Figure 8.2.2 Setup for substitution ERP measurements of spurious

Photograph 8.2.2 Setup for substitution ERP measurements of spurious

Test specification:	Effective radiated power of	Effective radiated power of transmitter spurious emissions					
Test procedure:	EN 301 511 Sections 5.3.16, 5	EN 301 511 Sections 5.3.16, 5.3.17					
Test mode:	Compliance	Vordiot	DV66				
Date(s):	30-Sep-15 - 22-Oct-15	veruici.	FA33				
Temperature: 23 °C	Air Pressure: 1012 hPa	Relative Humidity: 48 %	Power Supply: 12 VDC				
Remarks: 2G module							

Table 8.2.2 Spurious emission field strength test results in transmit mode

ASSIGNED FF	REQUENCY RANGE	:	1710	1710 -1785 MHz					
EUT ANTENNA:				Integral					
TEST DISTAN	CE:		3 m ⁻						
EUT HEIGHT:			1.5 m	ı					
TEST ANTENI	NA HEIGHTS RANG	E:	1.0 –	1.8 m					
INVESTIGATE	D FREQUENCY RA	NGE:	30 – 4	4000 MHz					
DETECTOR U	SED:		Quas	i-peak (30	– 1000 MHz)				
			Peak	(above 10	00 MHz)				
RESOLUTION	BANDWIDTH:		30 M	30 MHz – 500 MHz: 100 kHz (3 dB RBW)					
			500 N	500 MHz – 1000 MHz: 3.0 MHz (3 dB RBW)					
			abov	above 1000 MHz: 3.0 MHz (3 dB RBW)					
VIDEO BAND	WIDTH:		≥ Res	≥ Resolution bandwidth					
TEST ANTENI	NA TYPE:		Bicor	Biconilog (30 MHz – 1000 MHz)					
			Doub	le ridged o	guide (above 10	Ó0 MHz)			
MODULATION	l:		GMS	ΚŌ					
CHANNEL NUMBER:									
Frequency,	Field strength,	Limit,	Margin, RBW, Antenna Antenna Turn-table						
MHz	dB(uV/m)	dB(uV/m)	dB*	kHz	polarization	height, m	position**, degrees		
Mid carrier freq	uency								
1805.0	52.2	67.3	-14 9	1000	Horizontal	15	130		

*- Margin = Field strength of spurious – calculated field strength limit. **- EUT front panel refer to 0 degrees position of turntable.

Test specification:	Effective radiated power	Effective radiated power of transmitter spurious emissions				
Test procedure:	EN 301 511 Sections 5.3.16, \$	N 301 511 Sections 5.3.16, 5.3.17				
Test mode:	Compliance	Vordict	DAGG			
Date(s):	30-Sep-15 - 22-Oct-15	verdict.	FA33			
Temperature: 23 °C	Air Pressure: 1012 hPa	Relative Humidity: 48 %	Power Supply: 12 VDC			
Remarks: 2G module						

Table 8.2.3 ERP of spurious emission test results in transmit mode

ASSIGNED FREQUENCY RANGE: TEST DISTANCE: SUBSTITUTION ANTENNA HEIGHT:	1710-1785 MHz 3 m 1.5 m					
DETECTOR USED:	1.0 – 1.8 m Quasi-peak (25 – 1000 MHz)					
	Peak (above 1000 MHz)					
RESOLUTION BANDWIDTH:	30 MHz – 500 MHz: 100 kHz (3 dB RBW) 500 MHz – 1000 MHz: 3 0 MHz (3 dB RBW)					
	above 1000 MHz: 3.0 MHz (3 dB RBW)					
VIDEO BANDWIDTH:	≥ Resolution bandwidth					
SUBSTITUTION ANTENNA TYPE: Biconical (25 MHz – 30 MHz)						
Tunable dipole (30 MHz – 1000 MHz)						
	Double ridged guide (above 1000 MHz)					
Field	Ant Cable Spurious					

				Double	e nuyeu	yulue (al		112)		
Frequency, MHz	Field strength, dB(uV/m)	RBW, kHz	Antenna polarization	RF generator output, dBm	Ant gain, dBd	Cable loss, dB	Spurious emission, dBm	Limit, dBm	Margin, dB*	Verdict
Mid carrier fr	requency									
1805	52.2	1000	Н	-50	6.6	1.2	-44.6	-30	-14.6	Pass
* Manain (0		a a alfi a a fi a a llian	.14						

*- Margin = Spurious emission – specification limit.

Reference numbers of test equipment used

HL 0521	HL 0567	HL 0661	HL 1984	HL 3615	HL 4114	HL 4224	HL 4353
Full description	n is given in App	pendix A.					

Test specification:	Effective radiated power	Effective radiated power of transmitter spurious emissions				
Test procedure:	EN 301 511 Sections 5.3.16,	EN 301 511 Sections 5.3.16, 5.3.17				
Test mode:	Compliance	Vordiot	DV66			
Date(s):	30-Sep-15 - 22-Oct-15	veraict:	FA33			
Temperature: 23 °C	Air Pressure: 1012 hPa	Relative Humidity: 48 %	Power Supply: 12 VDC			
Remarks: 2G module						

Plot 8.2.1 Radiated emission measurements from 30 to 500 MHz

Test specification:	Effective radiated power of transmitter spurious emissions				
Test procedure:	EN 301 511 Sections 5.3.16,	5.3.17			
Test mode:	Compliance	Vordict	DASS		
Date(s):	30-Sep-15 - 22-Oct-15	verdict:	FA33		
Temperature: 23 °C	Air Pressure: 1012 hPa	Relative Humidity: 48 %	Power Supply: 12 VDC		
Remarks: 2G module					

Plot 8.2.3 Radiated emission measurements from 1.0 to 1.710 MHz

TEST SITE:Anechoic chamberTEST DISTANCE:3 mANTENNA POLARIZATION:Vertical and Horizontal

Test specification:	Effective radiated power	Effective radiated power of transmitter spurious emissions				
Test procedure:	EN 301 511 Sections 5.3.16,	EN 301 511 Sections 5.3.16, 5.3.17				
Test mode:	Compliance	Vordiot	DASS			
Date(s):	30-Sep-15 - 22-Oct-15	verdict.	FA33			
Temperature: 23 °C	Air Pressure: 1012 hPa	Relative Humidity: 48 %	Power Supply: 12 VDC			
Remarks: 2G module						

Plot 8.2.5 Radiated emission measurements from 1749 to 1785 MHz

TEST SITE:Anechoic chamberTEST DISTANCE:3 mANTENNA POLARIZATION:Vertical and Horizontal

Plot 8.2.6 Radiated emission measurements from 1785 to 3000 MHz

1842.5 MHz is a carrier of Base station

Test specification:	Effective radiated power	Effective radiated power of transmitter spurious emissions				
Test procedure:	EN 301 511 Sections 5.3.16, 5	EN 301 511 Sections 5.3.16, 5.3.17				
Test mode:	Compliance	Vardiat	DASS			
Date(s):	30-Sep-15 - 22-Oct-15	veruict.	FASS			
Temperature: 23 °C	Air Pressure: 1012 hPa	Relative Humidity: 48 %	Power Supply: 12 VDC			
Remarks: 2G module						

Plot 8.2.7 Radiated emission measurements from 3.0 to 4.0 MHz at mid carrier frequency

TEST SIT TEST DIS ANTENNA	E: TANCE: A POLARIZA	Anecho 3 m TION: Vertica	bic chamber I and Horizon	tal	
3	Agilent			RT	
Re	⊧f 80 dB µV/m	#Atten 0 dB			Mkr1 3.891 GHz 47.36 dBµ∀/m
Pe	ak				
10 dE	3/				
					1 •
DI	- children and a second	moundated the made and	actual and the sported with	-edurate bold and a cost of the state	all i share the later of the la
67 dE	.3 βμ∀/m				
√1	S2				
S3 A	FC AA				
St #R	art 3 GHz Res BW 3 MHz		#VBW 3 MHz	#Swe	Stop 4 GHz ep 1 s (1001 pts)

Test specification:	Effective radiated power of transmitter spurious emissions					
Test procedure:	EN 301 511 Sections 5.3.16, 5	EN 301 511 Sections 5.3.16, 5.3.17				
Test mode:	Compliance	Vardiat	DASS			
Date(s):	30-Sep-15 - 22-Oct-15	verdict.	FA33			
Temperature: 23 °C	Air Pressure: 1012 hPa	Relative Humidity: 48 %	Power Supply: 12 VDC			
Remarks: 2G module						

Table 8.2.4 Spurious emission field strength test results in idle mode

	No signals were found						
Frequency, MHz	Field strength, dB(uV/m)	Limit, dB(uV/m)	Margin, dB*	RBW, kHz	Antenna polarization	Antenna height, m	Turn-table position**, degrees
		Double	e ridged gu	uide (above 100) MHz)		
TEST ANTENN	A TYPE:		Biconil	loa (30 MH	Iz – 1000 MHz)		
		above ≥ Reso	above 1000 MHz: 3.0 MHz (3 dB RBW) > Resolution bandwidth				
RESOLUTION BANDWIDTH:		30 MH	30 MHz – 500 MHz: 100 kHz (3 dB RBW)				
DETECTOR USED:		Quasi- Peak (реак (30 - above 100	- 1000 MHZ))0 MHz)			
INVESTIGATED		IGE:	30 – 4	000 MHz			
TEST ANTENN	A HEIGHTS RANGE	:	1.0 – 1	I.8 m			
EUT HEIGHT:	· L .		1.5 m				
EUT ANTEINNA. TEST DISTANCE:		3 m	al				
ASSIGNED FRE	EQUENCY RANGE:		1710-1	1785 MHz			

Verdict: Pass

Reference numbers of test equipment used

HL 2432	HL 2697	HL 2909	HL 3389	HL 4347	HL 4721	HL 4932	
	a ia aiwaa ia Aaa						

Full description is given in Appendix A.

Test specification:	Effective radiated power of transmitter spurious emissions					
Test procedure:	EN 301 511 Sections 5.3.16, 5.3.17					
Test mode:	Compliance	Vardiati	DASS			
Date(s):	30-Sep-15 - 22-Oct-15	veraict:	FA33			
Temperature: 23 °C	Air Pressure: 1012 hPa	Relative Humidity: 48 %	Power Supply: 12 VDC			
Remarks: 2G module			-			

Plot 8.2.8 Radiated emission measurements from 30 to 1000 MHz

Plot 8.2.9 Radiated emission measurements from 1 to 4 GHz

Test specification:	Equivalent isotropically radiated power, EN 301 908-2 section 4.2.2				
Test procedure:	EN 301 908-2 Section 5.3.1				
Test mode:	Compliance	Vardiati DASS			
Date(s):	30-Sep-15 - 22-Oct-15	verdict.	FA33		
Temperature: 23 °C	Air Pressure: 1012 hPa	Relative Humidity: 48 %	Power Supply: 12 VDC		
Remarks: 3G module					

9 Transmitter parameters according to EN 301 908-2 standard

9.1 Maximum output power of middle carrier

9.1.1 General

This test was performed to measure equivalent isotropically radiated power emanated by transmitter at carrier frequency. Specification test limits are given in Table 9.1.1.

Table 9.1.1 Output power limit, Band I, power class 3

Assigned frequency band,	Output power	Equivalent field strength limit @ 3m,	
MHz	dBm	dB(µV/m)*	
1920-1980 MHz	24 (+1.7/-3.7dB)	121.23	

*- Equivalent field strength limit was calculated from maximum allowed EIRP of carrier as follows: E=sqrt(30×P)/r, where P is EIRP in Watts and r is antenna to EUT distance in meters.EIRP=Output power+Gain antenna (2 db)

9.1.2 Test procedure for field strength measurements

- **9.1.2.1** The EUT was set up as shown in Figure 9.1.1, energized and the performance check was conducted.
- **9.1.2.2** The field strength of the EUT carrier frequency was measured with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiaion the turntable was rotated 360⁰, the measuring antenna height was swept throughout the range, specified in Table 9.1.2, in both vertical and horizontal polarizations.
- 9.1.2.3 The worst test results with respect to the limits were recorded in Table 9.1.2 and shown in the associated plots.

9.1.3 Test procedure for substitution EIRP measurements

- **9.1.3.1** The test equipment was set up as shown in Figure 9.1.2 and energized.
- **9.1.3.2** RF signal generator was set to the EUT carrier frequency and the RF output level was preliminary adjusted to produce the same field strength as it was measured from the EUT.
- **9.1.3.3** The test antenna height was swept throughout the specified in Table 9.1.2 range to find maximum emission from substitution antenna and RF signal generator output was fine adjusted to produce the same field strength as it was measured from the EUT.
- **9.1.3.4** The EIRP was calculated as a sum of signal generator output power in dBm and antenna gain in dBi reduced by cable loss in dB.
- 9.1.3.5 The above procedure was performed in both horizontal and vertical polarizations of the test antenna.
- **9.1.3.6** The worst test results with respect to the limits were recorded in Table 9.1.3 and shown in the associated plots.

Test specification:	Equivalent isotropically radiated power, EN 301 908-2 section 4.2.2					
Test procedure:	EN 301 908-2 Section 5.3.1					
Test mode:	Compliance	Vordict	DV66			
Date(s):	30-Sep-15 - 22-Oct-15	verdict.	FA33			
Temperature: 23 °C	Air Pressure: 1012 hPa	Relative Humidity: 48 %	Power Supply: 12 VDC			
Remarks: 3G module			-			

Figure 9.1.1 Setup for carrier field strength measurements

Photograph 9.1.1 Setup for carrier field strength measurements

Test specification:	Equivalent isotropically radiated power, EN 301 908-2 section 4.2.2					
Test procedure:	EN 301 908-2 Section 5.3.1					
Test mode:	Compliance	Vordict	DASS			
Date(s):	30-Sep-15 - 22-Oct-15	verdict.	FA33			
Temperature: 23 °C	Air Pressure: 1012 hPa	Relative Humidity: 48 %	Power Supply: 12 VDC			
Remarks: 3G module						

Figure 9.1.2 Setup for substitution EIRP measurements

Test specification:	Equivalent isotropically radiated power, EN 301 908-2 section 4.2.2					
Test procedure:	EN 301 908-2 Section 5.3.1					
Test mode:	Compliance	Vordiot	DV66			
Date(s):	30-Sep-15 - 22-Oct-15	veraict:	FA33			
Temperature: 23 °C	Air Pressure: 1012 hPa	Relative Humidity: 48 %	Power Supply: 12 VDC			
Remarks: 3G module						

Table 9.1.2 Transmitter carrier field strength

ASSIGNED FREQUENCY RANGE:	1920 – 1980 MHz
TEST SITE:	Fully anechoic chamber
TEST DISTANCE:	3 m
EUT HEIGHT:	1.5 m
TEST ANTENNA HEIGHTS RANGE:	1.0 – 1.8 m
DETECTOR USED:	Peak
TEST ANTENNA TYPE:	Double ridged guide (above 1000 MHz)
MODULATION:	GMSK
EUT POSITION:	3 ortogonal positions (see Note)
	, , ,

Frequency, MHz	Field strength, dB(μV/m)	Limit, dB(μV/m)	Margin, dB*	RBW, kHz	Antenna polarization	Antenna height, m	Turn-table position**, degrees
Mid carrier frequency							
1950	121.61	121.23	0.38	1000	Horizontal	1.5	134

Note: Maximum value was obtained in the EUT Z-axis position *- Margin = Field strength – calculated field strength limit. **- EUT front panel refer to 0 degrees position of turntable.

Table 9.1.3 Transmitter carrier EIRP

TEST DISTANCE: SUBSTITUTION AN TEST ANTENNA HE DETECTOR USED: VIDEO BANDWIDTH	IENNA HEIGH IGHTS RANGI I:	T: E:	3 m 1.5 m 1.0 – 1 Peak 3 MHz	.8 m	uida (aba)	/o 1000 M			
Frequency, MHz BFrequency, MHz B(µ	Id gth, //m)	Antenna polariz.	RF generator output, dBm	Ant gain, dBi	Cable loss, dB	EIRP, dBm	Output power*, dBm	Limit, dBm	Verdict
Mid carrier frequency									
1950 121	.61 1000	Horiz.	28	4.51	6	26.51	24.51	24(+1.7/-3.7)	Pass

*-Output power, dBm = EIRP, dBm – Antenna gain (G=2 dBi)

Reference numbers of test equipment used

HL 0567	HL 0661	HL 2432	HL 3615	HL 3818	HL 4114	HL 4276	HL 4278	
Full docorinti	on is givon in	Annondix A						

Full description is given in Appendix A.

Test specification:	Equivalent isotropically radiated power, EN 301 908-2 section 4.2.2					
Test procedure:	EN 301 908-2 Section 5.3.1					
Test mode:	Compliance	Vordict	DAGG			
Date(s):	30-Sep-15 - 22-Oct-15	verdict:	FA33			
Temperature: 23 °C	Air Pressure: 1012 hPa	Relative Humidity: 48 %	Power Supply: 12 VDC			
Remarks: 3G module						

Plot 9.1.1 Transmitter carrier field strength at mid frequency, vertical antenna polarization, X-axis position

Plot 9.1.2 Transmitter carrier field strength at mid frequency, horizontal antenna polarization, X-axis position

Test specification:	Equivalent isotropically radiated power, EN 301 908-2 section 4.2.2					
Test procedure:	EN 301 908-2 Section 5.3.1					
Test mode:	Compliance	Vordict	DAGG			
Date(s):	30-Sep-15 - 22-Oct-15	verdict.	FA33			
Temperature: 23 °C	Air Pressure: 1012 hPa	Relative Humidity: 48 %	Power Supply: 12 VDC			
Remarks: 3G module						

Plot 9.1.3 Transmitter carrier field strength at mid frequency, vertical antenna polarization, Y-axis position

Plot 9.1.4 Transmitter carrier field strength at mid frequency, horizontal antenna polarization, Y-axis position

Test specification:	Equivalent isotropically radiated power, EN 301 908-2 section 4.2.2			
Test procedure:	EN 301 908-2 Section 5.3.1			
Test mode:	Compliance	Vardiat	DAGG	
Date(s):	30-Sep-15 - 22-Oct-15	verdict.	FA33	
Temperature: 23 °C	Air Pressure: 1012 hPa	Relative Humidity: 48 %	Power Supply: 12 VDC	
Remarks: 3G module				

Plot 9.1.5 Transmitter carrier field strength at mid frequency, vertical antenna polarization, Z-axis position

Plot 9.1.6 Transmitter carrier field strength at mid frequency, horizontal antenna polarization, Z-axis position

Test specification:	Transmitter spurious emissions, EN 301 908-2 section 4.2.4			
Test procedure:	EN 301 908-2 Section 5.3.3			
Test mode:	Compliance	Vordiot	DASS	
Date(s):	30-Sep-15 - 22-Oct-15	verdict.	FA33	
Temperature: 23 °C	Air Pressure: 1012 hPa	Relative Humidity: 48 %	Power Supply: 12 VDC	
Remarks: 3G module				

9.2 Effective radiated power of transmitter spurious emission

9.2.1 General

This test was performed to measure radiated spurious emissions from the EUT. Specification test limits are given in Table 9.2.1.

	Operating mode		St	andby mode
Frequency, MHz	ERP of spurious, dBm	Equivalent field strength limit @ 3m, dB(µV/m)*	EIRP of spurious, dBm	Equivalent field strength limit @ 3m, dB(μV/m)*
0.009 - 30	- 36	61.3	NA	NA
30-791	- 36	61.3	-57	40.3
791-821	-60	37.3	-60	37.3
821-921	-36	61.3	-57	40.3
921-925	-60	37.3	-60	37.3
925-935	-67	30.3	-67	30.3
935-960	-79	18.3	-79	18.3
960-1000	-36	61.3	-57	40.3
1000 - 1805	- 30	67.3	- 47	50.3
1805-1880	-71	26.3	-71	26.3
1880-1920	-30	67.3	-47	50.3
1920-1937.5	-30	67.3	-60	37.3
1937.5-1962.5	NA	NA	-60	37.3
1962.5-1980	-30	67.3	-60	37.3
1980-2100	-30	67.3	-47	50.3
2110-2170	-60	37.3	-60	37.3
2170-2585	-30	67.3	-47	50.3
2585-2690	- 60	37.3	-60	37.3
2690-12500	- 30	67.3	- 47	50.3

Table 9.2.1 Radiated spurious emission test limits

*- Equivalent field strength limit was calculated from maximum allowed EIRP of spurious as follows: E=sqrt(30×P)/r, where P is EIRP in Watts and r is antenna to EUT distance in meters.

9.2.2 Test procedure for spurious emission field strength measurements in transmit mode

- 9.2.2.1 The EUT was set up as shown in Figure 9.2.1, energized and the performance check was conducted.
- 9.2.2.2 The EUT was adjusted to produce maximum available for end user RF output power.
- **9.2.2.3** The specified frequency range was investigated with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360⁰, the measuring antenna height was swept throughout the specified in Table 9.2.2 range in both, vertical and horizontal, polarizations.
- 9.2.2.4 The worst test results (the lowest margins) were recorded in Table 9.2.2 and shown in the associated plots.

9.2.3 Test procedure for spurious emission field strength measurements in idle mode

- **9.2.3.1** The EUT was set up as shown in Figure 9.2.1, energized and the performance check was conducted.
- **9.2.3.2** The specified frequency range was investigated with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360⁰, the measuring antenna height was swept throughout the specified in Table 9.2.4 range in both, vertical and horizontal, polarizations.
- 9.2.3.3 The worst test results (the lowest margins) were recorded in Table 9.2.4 and shown in the associated plots.

Test specification:	Transmitter spurious emissions, EN 301 908-2 section 4.2.4			
Test procedure:	EN 301 908-2 Section 5.3.3			
Test mode:	Compliance	Vordict	DV66	
Date(s):	30-Sep-15 - 22-Oct-15	verdict.	FA33	
Temperature: 23 °C	Air Pressure: 1012 hPa	Relative Humidity: 48 %	Power Supply: 12 VDC	
Remarks: 3G module				

Figure 9.2.1 Setup for spurious emission field strength measurements

Photograph 9.2.1 Setup for spurious emission field strength measurements

Test specification:	Transmitter sourious emi	ssions EN 301 908-2 section	on 4 2 4
rest specification.	fransmitter spundus em	13310113, EN 001 300-2 30011	//
Test procedure:	EN 301 908-2 Section 5.3.3		
Test mode:	Compliance	Vardiat	DASS
Date(s):	30-Sep-15 - 22-Oct-15	verdict:	FA33
Temperature: 23 °C	Air Pressure: 1012 hPa	Relative Humidity: 48 %	Power Supply: 12 VDC
Remarks: 3G module			

Table 9.2.2 Spurious emission field strength test results in transmit mode

ASSIGNED FF	REQUENCY RANGE	<u>.</u>	1920	- 1980 MH	lz		
EUT ANTENN	A:		Integ	ral			
TEST DISTAN	CE:		3 m				
EUT HEIGHT:			1.5 m	۱			
TEST ANTEN	NA HEIGHTS RANG	iE:	1.0 –	1.8 m			
INVESTIGATE	D FREQUENCY RA	NGE:	30 –	4000 MHz			
DETECTOR U	SED:		Quas	i-peak (30	– 1000 MHz)		
			Peak	(above 10	00 MHz)		
RESOLUTION	BANDWIDTH:		30 M	Hz – 500 N	/Hz: 100 kHz (3 dB RBW)	
			500 N	ИHz – 100	0 MHz: 3.0 MH	lz (3 dB RBW)	
			abov	e 1000 MH	lz: 3.0 MHz (3	dB RBW)	
VIDEO BAND	VIDTH:		≥ Res	solution ba	Indwidth		
TEST ANTEN	NA TYPE:		Bicor	nilog (30 M	Hz – 1000 MH	z)	
			Doub	le ridged g	guide (above 1	000 MHz)	
MODULATION	l:		GMS	K			
CHANNEL NU	MBER:		698				
Frequency, Field strength, Limit, Margin, RBW, Antenna Antenna Turn-table							Turn-table
MHz	dB(uV/m)	dB(uV/m)	dB*	kHz	polarization	height, m	position**, degrees
	No signals were found						

Verdict:Pass

*- Margin = Field strength of spurious – calculated field strength limit. **- EUT front panel refer to 0 degrees position of turntable.

Reference numbers of test equipment used

HL 0521	HL 0661	HL 1500	HL 1984	HL 4114	HL 4224	HL 4353	
				•			

Full description is given in Appendix A.

Test specification:	Transmitter spurious emissions, EN 301 908-2 section 4.2.4			
Test procedure:	EN 301 908-2 Section 5.3.3			
Test mode:	Compliance	Vardiati	DASS	
Date(s):	30-Sep-15 - 22-Oct-15	verdict:	FA33	
Temperature: 23 °C	Air Pressure: 1012 hPa	Relative Humidity: 48 %	Power Supply: 12 VDC	
Remarks: 3G module				

Plot 9.2.1 Radiated emission measurements from 0.009 to 0.150 MHz

Test specification:	Transmitter spurious emissions, EN 301 908-2 section 4.2.4			
Test procedure:	EN 301 908-2 Section 5.3.3			
Test mode:	Compliance	Vordiot	DV66	
Date(s):	30-Sep-15 - 22-Oct-15	verdict.	FA33	
Temperature: 23 °C	Air Pressure: 1012 hPa	Relative Humidity: 48 %	Power Supply: 12 VDC	
Remarks: 3G module				

Test specification:	Transmitter spurious emissions, EN 301 908-2 section 4.2.4			
Test procedure:	EN 301 908-2 Section 5.3.3			
Test mode:	Compliance	Vardiat	DV66	
Date(s):	30-Sep-15 - 22-Oct-15	veruict.	FA33	
Temperature: 23 °C	Air Pressure: 1012 hPa	Relative Humidity: 48 %	Power Supply: 12 VDC	
Remarks: 3G module				

Plot 9.2.4 Radiated emission measurements from 925 to 960 MHz

TEST SITE:	Anechoic chamber
TEST DISTANCE:	3 m
ANTENNA POLARIZATION:	Vertical and Horizontal

TEST SITE: TEST DISTANCE: ANTENNA POLARIZATION:

Anechoic chamber 3 m I: Vertical and Horizontal

Test specification:	Transmitter spurious emissions, EN 301 908-2 section 4.2.4			
Test procedure:	EN 301 908-2 Section 5.3.3			
Test mode:	Compliance	Vardiat	DASS	
Date(s):	30-Sep-15 - 22-Oct-15	veruict.	FAGG	
Temperature: 23 °C	Air Pressure: 1012 hPa	Relative Humidity: 48 %	Power Supply: 12 VDC	
Remarks: 3G module				

Plot 9.2.6 Radiated emission measurements from 1962.5 to 3000 MHz

TEST SITE: Anechoic chamber TEST DISTANCE: 3 m ANTENNA POLARIZATION: Vertical and Horizontal 🔆 Agilent O R T Mkr1 2.140 6 GHz 54.74 dBµV/m Ref 70 dB_µV/m #Atten 0 dB #Avg Log 10 Ŷ dB/ DI 67.3 dBµV/ FAvg V1 S2 S3 FC A AA ¤(1): FTun Swp Start 1.962 5 GHz Stop 3.000 0 GHz VBW 3 MHz #Res BW 1 MHz #Sweep 100 ms (601 pts) 🔆 Agilent ÔRT ÔRT 🔆 Agilent Mkr1 2.140 0 GHz Mkr1 2.587 800 GHz Ref 60 dBμV/m #Avg Log 10 Ref 60 dBμV/m #Avg Log 10 #Atten 0 dB #Atten 0 dB 54.59 dBµV/m dB/ dB/ • DI 37.3 dBµV/ DI 37.3 dBμV FAvg FAvg V1 S2 S3 FC A AA ¤(1): FTun V1 S2 V1 S2 S3 FC A AA ¤(1): FTun Swp FA Swp FA

Stop 2.170 0 GHz

#Sweep 100 ms (601 pts)

Start 2.585 000 GHz

#Res BW 4 MHz

Start 2.110 0 GHz

#Res BW 4 MHz

VBW 8 MHz

34.09 dBµV/m

Stop 2.690 000 GHz

#Sweep 1 s (601 pts)

VBW 8 MHz

Test specification:	Transmitter spurious emissions, EN 301 908-2 section 4.2.4				
Test procedure:	EN 301 908-2 Section 5.3.3				
Test mode:	Compliance	Vordict	DASS		
Date(s):	30-Sep-15 - 22-Oct-15	verdict:	FA33		
Temperature: 23 °C	Air Pressure: 1012 hPa	Relative Humidity: 48 %	Power Supply: 12 VDC		
Remarks: 3G module					

Plot 9.2.7 Radiated emission measurements from 3.0 to 8.0 GHz at mid carrier frequency

Plot 9.2.8 Radiated emission measurements from 8.0 to 12.75 GHz at mid carrier frequency

Test specification:	Transmitter spurious emissions, EN 301 908-2 section 4.2.4				
Test procedure:	EN 301 908-2 Section 5.3.3				
Test mode:	Compliance	Vordict	DV66		
Date(s):	30-Sep-15 - 22-Oct-15	verdict.	FA33		
Temperature: 23 °C	Air Pressure: 1012 hPa	Relative Humidity: 48 %	Power Supply: 12 VDC		
Remarks: 3G module					

Table 9.2.3 Spurious emission field strength test results in idle mode

ASSIGNED FREQUENCY R EUT ANTENNA: TEST DISTANCE:	2100-2 Integra 3 m	2100-2170 MHz Integral 3 m					
EUT HEIGHT:		1.5 m					
IESI ANIENNA HEIGHIS	RANGE:	1.0 – 1	1.8 m				
INVESTIGATED FREQUEN	CY RANGE:	30 – 4	000 MHz				
DETECTOR USED:		Quasi	-peak (30 -	– 1000 MHz)			
		Peak	(above 100	00 MHz)			
RESOLUTION BANDWIDTH	ł:	30 MH	lz – 500 M	Hz: 100 kHz (3	dB RBW)		
		500 M	Hz – 1000	MHz: 3.0 MHz	(3 dB RBW)		
		above	1000 MHz	z: 3.0 MHz (3 d	B RBW)		
VIDEO BANDWIDTH:		≥ Res	olution bar	ndwidth	,		
TEST ANTENNA TYPE			Biconilog (30 MHz - 1000 MHz)				
	Double	Double ridged guide (above 1000 MHz)					
Frequency, Field stree	ngth, Limit,	Margin,	RBW,	Antenna polarizatio	Antenna	Turn-table	

	Frequency, MHz	Field strength, dB(uV/m)	Limit, dB(uV/m)	Margin, dB*	RBW, kHz	Antenna polarizatio n	Antenna height, m	Turn-table position**, degrees
ĺ	No signals were found							

Verdict: Pass

Reference numbers of test equipment used

HL 2432	HL 2697	HL 2909	HL 3389	HL 4347	HL 4721	HL 4932	

Full description is given in Appendix A.

Test specification:	Transmitter spurious emissions, EN 301 908-2 section 4.2.4				
Test procedure:	EN 301 908-2 Section 5.3.3				
Test mode:	Compliance	Vordiot	DASS		
Date(s):	30-Sep-15 - 22-Oct-15	verdict.	FA33		
Temperature: 23 °C	Air Pressure: 1012 hPa	Relative Humidity: 48 %	Power Supply: 12 VDC		
Remarks: 3G module					

TEST SITE:Anechoic chamberTEST DISTANCE:3 mANTENNA POLARIZATION:Vertical and Horizontal

Test specification:	Transmitter spurious emissions, EN 301 908-2 section 4.2.4				
Test procedure:	EN 301 908-2 Section 5.3.3				
Test mode:	Compliance	Vordiot	DASS		
Date(s):	30-Sep-15 - 22-Oct-15	verdict.	FASS		
Temperature: 23 °C	Air Pressure: 1012 hPa	Relative Humidity: 48 %	Power Supply: 12 VDC		
Remarks: 3G module					

Test specification:	Transmitter spurious emissions, EN 301 908-2 section 4.2.4			
Test procedure:	EN 301 908-2 Section 5.3.3			
Test mode:	Compliance	Vordict	DASS	
Date(s):	30-Sep-15 - 22-Oct-15	verdict.	FA33	
Temperature: 23 °C	Air Pressure: 1012 hPa	Relative Humidity: 48 %	Power Supply: 12 VDC	
Remarks: 3G module				

Plot 9.2.12 Radiated emission measurements from 1 to 3 GHz

TEST SITE:Anechoic chamberTEST DISTANCE:3 mANTENNA POLARIZATION:Vertical and Horizontal

OFF SET=20log(3.84 MHz/RBW)= 20log(3.84 MHz/3 MHz) =2.14 dB

Test specification:	Transmitter spurious emissions, EN 301 908-2 section 4.2.4				
Test procedure:	EN 301 908-2 Section 5.3.3				
Test mode:	Compliance	Vordiot	DV66		
Date(s):	30-Sep-15 - 22-Oct-15	verdici.	FA33		
Temperature: 23 °C	Air Pressure: 1012 hPa	Relative Humidity: 48 %	Power Supply: 12 VDC		
Remarks: 3G module					

Plot 9.2.13 Radiated emission measurements from3 to 8 GHz

TEST SITE:Anechoic chamberTEST DISTANCE:3 mANTENNA POLARIZATION:Vertical and Horizontal

TEST SITE: TEST DISTANCE: ANTENNA POLARIZATION:

Anechoic chamber 3 m Vertical and Horizontal

10 EMF Assessment according to EN 62311 standard

10.1 Limits

The below limits are derived from 1999/519/EC Council Recommendation which is based on ICNIRP Guidelines – 1998.

10.2 Basic restrictions for electric, magnetic and electromagnetic fields (0 Hz to 300 GHz)

Restrictions on exposure to time-varying electric, magnetic, and electromagnetic fields which are based directly on established health effects and biological considerations are termed 'basic restrictions'.

Frequency range	Magnetic flux density, mT	Current density, mA _{rms} /m ²	Whole body average SAR, W/kg	Localised SAR (head and trunk), W/kg	Localised SAR (limbs), W/kg	Power density S, W/m ²
0 Hz	40	-	-	-	-	-
>0-1 Hz	-	8	-	-	-	-
1-4 Hz	-	8/f	-	-	-	-
4-1 000 Hz	-	2	-	-	-	-
1 000 Hz-100 kHz	-	f/500	-	-	-	-
100 kHz-10 MHz	-	f/500	0.08	2	4	-
10 MHz-10 GHz	-	-	0.08	2	4	-
10-300 GHz	-	-	-	-	-	10

10.3 Reference level

Reference levels are provided for practical exposure-assessment purposes to determine whether the basic restrictions are likely to be exceeded.

Frequency range	E-field strength, V/m	H-field strength, A/m	B-field, μT	Equivalent plane wave power density Seq, W/m ²
0-1 Hz	-	32000	40000	-
1-8 Hz	10000	32000	$40000/f^2$	-
8-25 Hz	10000	4000/f	5000/f	-
0.025-0.8 kHz	250/f	4/f	5/f	-
0.8-3 kHz	250/f	5	6.25	-
3-150 kHz	87	5	6.25	-
0.15-1 MHz	87	0.73/f	0.92/f	-
1-10 MHz	87/√f -	0.73/f	0.92/f	-
10-400 MHz	28	0.073	0.092	2
400-2000 MHz	$1.375\sqrt{f}$	$0.0037\sqrt{f}$	0.0046√ <i>f</i>	f/200
2-300 GHz	61	0.16	0.20	10

10.4 Low power exclusion level

Low-power electronic and electrical equipment is deemed to comply with the provisions of this standard if it can be demonstrated using routes B, C or D that the available antenna power and/or the average total radiated power is less than or equal to the applicable low-power exclusion level Pmax.

Guideline / Standard	SAR limit (SARmax), W/kg	Averaging mass (m), g	Pmax, mW	Exposure tier	Region of body
	2	10	20	General public	Head and trunk
ICNIDD	4	10	40	General public	Limbs
IUNIKP	10	10	100	Occupational	Head and trunk
	20	10	200	Occupational	Limbs
	1.6	1	1.6	Uncontrolled environment	Head, trunk, arms, legs
IEEE Std	4	10	40	Uncontrolled environment	Hands, wrists, feet and ankles
C95.1-1999	8	1	8	Controlled environment	Head, trunk, arms, legs
	20	10	200	Controlled environment	Hands, wrists, feet and ankles
	2	10	20	Action level	Body except extremities and pinnae
IEEE Std	4	10	40	Action level	Extremities and pinnae
C95.1-2005	10	10	100	Controlled environment	Body except extremities and pinnae
	20	10	200	Controlled environment	Extremities and pinnae

10.5 RF exposure assessment

10.5.1 Transmitter output power derrivation

The present EMF assessment report represents an RF exposure evaluation for tracking vehicle product, models: CR300B 3G EU and CR300B 2G based on the test results and technical information provided in sections 8.1 and 9.1 of this test report.

The worst case combinations of output power with the antenna (the highest EIRP) are copied in Table 10.5.1 for the frequency bands under investigation.

Table 10.5.1 Tra	nsmitter	carrier	EIRP
------------------	----------	---------	------

EUT	Frequency,	EIF	RP	Unce	rtainty	EIRP expired by uncertainty		
	WITZ	dBm mW		dB	%	W		
CR300B 3G EU	1950	26.51*	447.7	117	149/22	0.528		
CR300B 2G	1747.5	29.46** 883.1		±1.7	+40/-32	1.041		

* - Table 9.1.3 of POIRAD_EN.27317 test report

** - Table 8.1.3 of POIRAD_EN.27317 test report

10.5.2 Uncertainty of measurement

The measurement uncertainties are ± 1.7 dB as reported in the above mentioned test reports or + 48 / -32% if expressed in linear terms. The refrence levels for RF exposure evaluation are derrivated based on uncertainty values within $\pm 30\%$. If the actual measurement uncertainty is larger than 30 %, then the actual uncertainty shall be included in the evaluation of compliance with the limit as follows:

$$L_m \le \left(\frac{1}{0.7 + \frac{U(L_m)}{L_m}}\right) L_{lim}$$

where

Lm is the measured value;

Llim is the exposure limit;

U(Lm) is the absolute expanded uncertainty of the measured value.

In this case the limit to demonstrate compliance with RF exposure will be:

$$L_m \le \left(\frac{1}{0.7 + 0.48}\right) L_{lim} = 0.85 \ L_{lim}$$

The limits are based on uncertainty values within $\pm 30\%$ according to section 6 of EN 62311 standard. In this case the measured power levels shall be expanded by the uncertainty value:

EIRP = 447.7 mW +(47.9% - 30.0%) x 447.7 mW = 528 mW EIRP = 883.1 mW +(47.9% - 30.0%) x 883.1 mW = 1041 mW

10.6 Evaluation of RF exposure

10.6.1 Applicability of limits

The applicable limit was identified based on the target compliance standard/recommendation and typical application of the product. The compliance requirements are according to 1999/519/EC Council Recommendation which is based on ICNIRP Guidelines – 1998.

Frequency range	E-field strength, V/m	H-field strength, A/m	B-field, μT	Equivalent plane wave power density Seq, W/m ²
400-2000 MHz	1.375√f	0.0037√f	0.0046√f	f/200
1747.5 MHz	57.48	0.155	0.19	8.74
1950 MHz	60.72	0.163	0.20	9.75

10.6.2 Minimum separation distance calculation

The minimum separation distance was calculated as a a minimum separation between the radiating structure (antenna) and the victim (humans) that allows compliance with the reference levels. The calculation is based on the far field model as described in the Annex A of EN 62311:2008:

$$PSD = \frac{EIRP}{4\pi r^2}$$

Converting the above equation the minimum separation distance for CR300B 2G device is:

$$r \geq \left| \frac{EIRP [W]}{4\pi \times PSD_{lim} \left[\frac{W}{m^2} \right]} = \sqrt{\frac{1.041}{4\pi \times 8.7}} = 0.097 \, m = 0.10 \, m \right|$$

The minimum separation distance for CR300B 3G EU device is:

$$r \geq \sqrt{\frac{EIRP[W]}{4\pi \times PSD_{lim}\left[\frac{W}{m^2}\right]}} = \sqrt{\frac{0.528}{4\pi \times 9.8}} = 0.07 m$$

10.6.3 Compliance assessment

Based on the above calculations it has been demonstrated that the PSD radiated by the product, expanded by the uncertainty value is less than the refrence level at the the minimum safety distance and considered complying with the basic restrictions without further measurements:

Total EIRP, W	Safety distance, m	PSD at safety distance, W/m ²	Limit, W/m²	Margin, W/m²	Verdict
1.041	0.10	8.28	8.74	-0.46	Pass
0.528	0.07	8.58	9.75	-1.17	Pass

*- Calculated as follows:

$$PSD = \frac{1.041}{4\pi (0.10)^2} = 8.28 \frac{W}{m^2} \le 8.74 \frac{W}{m^2}$$
$$PSD = \frac{0.528}{4\pi (0.07)^2} = 8.58 \frac{W}{m^2} \le 9.75 \frac{W}{m^2}$$

- **11** Transmitter photographs
- 11.1 External photos of 2G module

Photograph 11.1.1 Front view

Photograph 11.1.2 Rear view

11.2 Internal photos of 2G module

Photograph 11.2.1 Internal view

Photograph 11.2.2 Component side of the main PCB

Photograph 11.2.3 Print side of the main PCB

Photograph 11.2.4 Component side of the RF PCB

11.3 External photos of 3G module

Photograph 11.3.1 Front view

Photograph 11.3.2 Rear view

11.4 Internal photos of 3G module

Photograph 11.4.1 Internal view

Photograph 11.4.2 Component side of the main PCB

Photograph 11.4.3 Print side of the main PCB

Photograph 11.4.4 Component side of the RF PCB

12 APPENDIX A Test equipment and ancillaries used for tests

HL No	Description	Manufacturer	Model	Ser. No.	Last Cal./ Check	Due Cal./ Check
0521	EMI Receiver (Spectrum Analyzer) with RF filter section 9 kHz-6.5 GHz	Hewlett Packard	8546A	3617A 00319, 3448A002 53	27-Oct-15	27-Oct-16
0567	Antenna, Dipole, Tunable, 500 - 1000 MHz	Electro-Metrics	TDS- 25/30-2	298	05-Feb-15	05-Feb-16
0661	Generator Swept Signal, 10 MHz to 40 GHz, + 10 dBm	Hewlett Packard	83640B	3614A002 66	07-Apr-15	07-Apr-16
1500	Cable RF, 15 m, N/N-type	Suhner Switzerland	RG 214/U	1500	20-Nov-14	20-Nov-15
1984	Antenna, Double-Ridged Waveguide Horn, 1 to 18 GHz, 300 W	EMC Test Systems	3115	9911-5964	17-Apr-15	17-Apr-16
2432	Antenna, Double-Ridged Waveguide Horn 1 to 18 GHz	EMC Test Systems	3115	00027177	17-Apr-15	17-Apr-16
2697	Antenna, 30 MHz - 3.0 GHz	Sunol Sciences. Corp. Pleasanton, California USA	JB3	A022805	15-May-15	15-May-16
2780	EMC analyzer, 100 Hz to 26.5 GHz	Agilent Technologies	E7405A	MY451024 62	08-Sep-15	08-Sep-16
2909	Spectrum analyzer, ESA-E, 100 Hz to 26.5 GHz	Agilent Technologies	E4407B	MY414447 62	22-Feb-15	22-Feb-16
3389	Microwave Cable Assembly, 26.5 GHz, 1.0 m, N type/N type	Suhner Sucoflex	104EA	3389	04-Feb-15	04-Feb-16
3615	Cable RF, 6.5 m, N type-N type, DC-6 GHz	Suhner Switzerland	RG 214/U	NA	16-Sep-15	16-Sep-16
3818	PSA Series Spectrum Analyzer, 3 Hz- 44 GHz	Agilent Technologies	E4446A	MY482502 88	29-Apr-15	29-Apr-16
4114	Antenna, Double-Ridged Waveguide Horn, 1 to 18 GHz	ETS Lindgren	3117	00123515	19-Dec-14	19-Dec-15
4224	Precision Fixed Attenuator, 50 Ohm, 5W, 10dB, DC to 18000 MHz	Mini-Circuits	BW- N10W5+	NA	09-Mar-15	09-Mar-16
4276	Test Cable , DC-18 GHz, 3.05 m, N/M - N/M	Mini-Circuits	APC- 10FT- NMNM+	0747A	20-Nov-14	20-Nov-15
4278	Test Cable , DC-18 GHz, 4.6 m, N/M - N/M	Mini-Circuits	APC- 15FT- NMNM+	0755A	20-Nov-14	20-Nov-15
4347	Low Loss Armored Test Cable, DC - 18 GHz, 2.0 m, N type-M/N type-M	MegaPhase	NC29- N1N1-79	12025103 001	08-Jan-15	08-Jan-16
4353	Low Loss Armored Test Cable, DC - 18 GHz, 6.2 m, N type-M/N type-M	MegaPhase	NC29- N1N1-244	12025101 003	15-Mar-15	15-Mar-16
4721	Low Loss Armored Test Cable, DC - 18 GHz, 4.5 m, N type-M/N type-M	MegaPhase	NC29- N1N1-177	51300101 001	12-Jul-15	12-Jul-16
4932	Microwave preamplifier, 500 MHz to 18 GHz, 40 dB Gain	Com-Power Corporation	PAM- 118A	551029	18-Nov-14	18-Nov-15

13 APPENDIX B Measurement uncertainties

Expanded uncertainty at 95% confidence in Hermon Labs EMC measurements

Test description	Expanded uncertainty
Frequency error	
5 – 30 MHz	±6.1 Hz (1.22 ppm)
30 – 300 MHz	±50.5 Hz (1.68 ppm)
300 – 1000 MHz	±168 Hz (0.56 ppm)
Carrier power conducted at antenna connector	±1.7 dB
Carrier power radiated (ERP), substitution	±4.5 dB
method	
Frequency deviation	±7.0%
Range of modulation bandwidth	±8.0%
Spurious emissions conducted at RF antenna	9 kHz to 2.9 GHz: ± 2.6 dB
connector	2.9 GHz to 6.46 GHz: ± 3.5 dB
	6.46 GHz to 13.2 GHz: ± 4.3 dB
	13.2 GHz to 22.0 GHz: ± 5.0 dB
	22.0 GHz to 26.8 GHz: ± 5.5 dB
	26.8 GHz to 40.0 GHz: ± 4.8 dB
Spurious emissions radiated, 30 MHz – 40 GHz,	±4.5 dB
substitution method	

Hermon Laboratories is accredited by A2LA for calibration according to present requirements of ISO/IEC 17025 and NCSL Z540-1. The accreditation is granted to perform calibration of parameters that are listed in the Scope of Hermon Laboratories Accreditation.

Hermon Laboratories calibrates its reference and transfer standards by calibration laboratories accredited to ISO/IEC 17025 by a mutually recognized Accreditation Body or by a recognized national metrology institute. All reference and transfer standards used in the calibration system are traceable to national or international standards.

In-house calibration of all test and measurement equipment is performed on a regular basis according to Hermon Laboratories calibration procedures, manufacturer calibration/verification procedures or procedures defined in the relevant standards. The Hermon Laboratories test and measurement equipment is calibrated within the tolerances specified by the manufacturers and/or by the relevant standards.

14 APPENDIX C Test laboratory description

Tests were performed at Hermon Laboratories Ltd., which is a fully independent, private, EMC, safety, environmental and telecommunication testing facility.

Hermon Laboratories is listed by the Federal Communications Commission (USA) for all parts of Code of Federal Regulations 47 (CFR 47), Registration Numbers 90624 for OATS and 90623 for the anechoic chamber; by Industry Canada for electromagnetic emissions (file numbers IC 2186A-1 for OATS), certified by VCCI, Japan (the registration numbers are R-808 for OATS, R-1082 for anechoic chamber, C-845 for conducted emissions site, T-1606 for conducted emissions at telecommunication ports), has a status of a Telefication - Listed Testing Laboratory, Certificate No. L138/00. The laboratory is accredited by American Association for Laboratory Accreditation (USA) according to ISO/IEC 17025 for electromagnetic compatibility, product safety, telecommunications testing and environmental simulation (for exact scope please refer to Certificate No. 839.01). The FCC Designation Number is US1003.

P.O. Box 23, Binyamina 30500, Israel.
+972 4628 8001
+972 4628 8277
mail@hermonlabs.com
www.hermonlabs.com

Person for contact: Mr. Alex Usoskin, CEO.

15 APPENDIX D Specification references

EN 300 440-1 V1.6.1: 2010	Electromagnetic compatibility and Radio spectrum Matters (ERM); Short Range Devices (SRD); Radio equipment to be used in the 25 MHz to 1000 MHz frequency range with power levels ranging up to 500 mW; Part 1: Technical characteristics and test methods
EN 300 440-2 V1.4.1: 2010	Electromagnetic compatibility and Radio spectrum Matters (ERM); Short Range Devices (SRD); Radio equipment to be used in the 25 MHz to 1000 MHz frequency range with power levels ranging up to 500 mW; Part 3: Harmonized EN covering essential requirements under article 3.2 of the R&TTE Directive
EN 301 511 V12.1.1:2015	Global System for Mobile communications (GSM); Harmonized EN for mobile stations in the GSM 900 and GSM 1800 bands covering essential requirements under article 3.2 of the R&TTE directive (1999/5/EC)
TS 151 010-1 V9.3.0:2010	Digital cellular telecommunications system (Phase 2+); Mobile Station (MS) conformance specification; Part 1: Conformance specification (3GPP TS 51.010-1 version 5.7.0 Release 5)
EN 301 908-2 V6.2.1:2013	IMT cellular networks; Harmonized EN covering the essential requirements of article 3.2 of the R&TTE Directive; Part 2: CDMA Direct Spread (UTRA FDD) User Equipment (UE)
ERC REC 70-03	ERC Recommendation 70-03: 2015
EN 62311:2008	Assessment of electronic and electrical equipment related to human exposure restrictions for electromagnetic fields (0 Hz – 300 GHz)
1999/519/EC	COUNCIL RECOMMENDATION of 12 July 1999 on the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz)
ICNIRP:1998	International Commission on Non-Ionizing Radiation Protection. Guidelines for limiting exposure in time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)
IEEE Std C95.1-2005	IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz
ISO/IEC 17025:2005	General requirements for the competence of testing and calibration laboratories
IEC/TR 62630:2010	Guidance for evaluating exposure from multiple electromagnetic sources

16 APPENDIX E Test equipment correction factors

Frequency,	Antenna factor,
1000.0	24.7
1500.0	25.7
2000.0	27.6
2500.0	28.9
3000.0	31.2
3500.0	32.0
4000.0	32.5
4500.0	32.7
5000.0	33.6
5500.0	35.1
6000.0	35.4
6500.0	34.9
7000.0	36.1
7500.0	37.8
8000.0	38.0
8500.0	38.1
9000.0	39.1
9500.0	38.3
10000.0	38.6
10500.0	38.2
11000.0	38.7
11500.0	39.5
12000.0	40.0
12500.0	40.4
13000.0	40.5
13500.0	41.1
14000.0	41.6
14500.0	41.7
15000.0	38.7
15500.0	38.2
16000.0	38.8
16500.0	40.5
17000.0	42.5
17500.0	45.9
18000.0	49.4

Antenna factor Double-ridged wave guide horn antenna Model 3115, S/N 9911-5964, HL1984

Antenna factor in dB(1/m) is to be added to receiver meter reading in dB(μ V) to convert it into field strength in dB(μ V/m).

Antenna factor Double-ridged guide horn antenna Model 3115, serial number: 00027177, HL 2432

Frequency, MHz	Antenna factor. dB(1/m)
1000.0	24.7
1500.0	25.7
2000.0	27.8
2500.0	28.9
3000.0	30.7
3500.0	31.8
4000.0	33.0
4500.0	32.8
5000.0	34.2
5500.0	34.9
6000.0	35.2
6500.0	35.4
7000.0	36.3
7500.0	37.3
8000.0	37.5
8500.0	38.0
9000.0	38.3
9500.0	38.3
10000.0	38.7
10500.0	38.7
11000.0	38.9
11500.0	39.5
12000.0	39.5
12500.0	39.4
13000.0	40.5
13500.0	40.8
14000.0	41.5
14500.0	41.3
15000.0	40.2
15500.0	38.7
16000.0	38.5
16500.0	39.8
17000.0	41.9
17500.0	45.8
18000.0	49.1

Antenna factor in dB(1/m) is to be added to receiver meter reading in dB(μ V) to convert it into field strength in dB(μ V/m).

Antenna calibration Sunol Sciences Inc., model JB3, serial number A022805, HL 2697

Frequency, MHz	ACF, dB	Gain, dBi	Num gain	Frequency, MHz	ACF, dB	Gain, dBi	Num gain	Frequency, MHz	ACF, dB	Gain, dBi	Num gain	Frequency, MHz	ACF, dB	Gain, dBi	Num gain	Frequency, MHz	ACF, dB	Gain, dBi	Num gain
30 35	22.2 18.5	-22.5 -17.4	0.01	620 625	19.7 19.7	6.3 6.5	4.27	1215 1220	24.9 24.9	7.0 7.0	5.05 4.99	1810 1815	28.3 28.5	7.1 6.9	5.08 4.91	2405 2410	30.9 30.9	6.9 6.9	4.93 4.89
40 45	14.7 11.3	-12.5 -8.1	0.06	630 635	19.6 19.7	6.6 6.5	4.57 4.48	1225 1230	25.1 25.2	6.9 6.8	4.91 4.82	1820 1825	28.6 28.7	6.8 6.8	4.74 4.75	2415 2420	31.0 31.0	6.9 6.8	4.85 4.82
45 50	11.3 8.9	-8.1 -4.7	0.16 0.34	640 645	19.9 19.9	6.4 6.5	4.40 4.45	1235 1240	25.1 25.0	7.0	4.96 5.09	1830 1835	28.7 28.7	6.8 6.7	4.76 4.72	2425 2430	31.1 31.0	6.8 6.9	4.81 4.87
55 60	7.9 7.8	-2.8 -2.1	0.52 0.62	650 655	19.9 19.9	6.5 6.6	4.51 4.60	1245 1250	25.0 25.0	7.1	5.12 5.15	1840 1845	28.8 28.6	6.7 6.9	4.69 4.90	2435 2440	31.0 31.2	6.9 6.8	4.88
65 70	8.5 9.0	-2.0 -1.9	0.63	660 665	19.9 19.9	6.7 6.7	4.69 4.70	1255 1260	25.0 24.9	7.2	5.25 5.36	1850 1855	28.4 28.5	7.1 7.0	5.12 5.07	2445 2450	31.1 31.0	6.9 7.0	4.91 4.96
75 80	8.8 8.4	-1.1 -0.2	0.78	670 675	20.0 20.1	6.7 6.7	4.71	1265 1270	25.0 25.1	7.3	5.31 5.26	1860 1865	28.6 28.5	7.0 7.1	5.01 5.17	2455 2460	31.0 30.9	7.0 7.2	5.01 5.19
85 90	8.0 8.2	0.8	1.20 1.29	680 685	20.1 20.1	6.7 6.8	4.71 4.79	1275 1280	25.3 25.5	7.0 6.8	5.05 4.84	1870 1875	28.4 28.4	7.3 7.2	5.33 5.28	2465 2470	31.1 31.3	6.9 6.8	4.95 4.76
95 100	9.2 10.6	0.5 -0.4	1.13 0.92	690 695	20.1 20.2	6.9 6.8	4.88 4.82	1285 1290	25.4 25.3	7.0 7.1	4.97 5.10	1880 1885	28.5 28.5	7.2 7.2	5.22 5.22	2475 2480	31.4 31.3	6.7 6.8	4.69 4.79
110 120	12.6 13.9	-1.6 -2.1	0.70 0.62	705 715	20.4 20.5	6.8 6.8	4.75 4.80	1300 1310	25.2 25.5	7.3	5.33 5.09	1895 1905	28.6 28.5	7.2 7.3	5.24 5.36	2490 2500	31.1 30.9	7.0	4.99 5.27
125 130	14.2 14.2	-2.0 -1.7	0.63	720 725	20.5 20.6	6.9 6.8	4.85 4.81	1315 1320	25.4 25.3	7.2	5.23 5.36	1910 1915	28.5 28.5	7.4 7.3	5.45 5.38	2505 2510	31.1 31.0	7.1 7.2	5.15 5.22
140 150	13.4 12.9	-0.3 0.8	0.94	735 745	20.9 21.0	6.7 6.6	4.65 4.59	1330 1340	25.6 25.7	7.0	5.06 5.09	1925 1935	28.6 28.5	7.3 7.4	5.35 5.54	2520 2530	31.2 31.0	7.0 7.3	5.05 5.37
160 165	12.7 12.5	1.6 2.0	1.44 1.59	755 760	21.0 21.0	6.8 6.8	4.74 4.83	1350 1355	25.7 25.8	7.1	5.17 5.06	1945 1950	28.5 28.6	7.5 7.4	5.59 5.48	2540 2545	31.2 31.0	7.1 7.3	5.09 5.43
170 175	12.2 11.8	2.6 3.3	1.83 2.13	765 770	21.1 21.3	6.8 6.7	4.73 4.64	1360 1365	25.9 26.0	6.9 6.9	4.95 4.95	1955 1960	28.6 28.6	7.5 7.5	5.57 5.65	2550 2555	31.0 31.1	7.3	5.39 5.30
180 185	11.6 11.5	3.7 4.0	2.36 2.54	775 780	21.3 21.3	6.7 6.7	4.68	1370 1375	26.0 26.0	7.0	4.96 5.01	1965 1970	28.7 28.9	7.4 7.2	5.47 5.29	2560 2565	31.0 30.8	7.4 7.6	5.47 5.70
190 200	11.6 13.1	4.2 3.2	2.61 2.07	785 795	21.3 21.4	6.8 6.8	4.77 4.79	1380 1390	26.0 26.1	7.0 6.9	5.06 4.92	1975 1985	28.9 29.1	7.2	5.22 5.11	2570 2580	31.1 31.6	7.3 6.9	5.37 4.87
205 210	12.0 11.0	4.4 5.6	2.76 3.66	800 805	21.5 21.6	6.8 6.7	4.77	1395 1400	26.2 26.2	6.9 7.0	4.94 4.96	1990 1995	29.1 29.1	7.0 7.1	5.06 5.09	2585 2590	31.6 31.6	6.8 6.9	4.79 4.88
215 220	11.3 11.6	5.6 5.5	3.59 3.52	810 815	21.7 21.7	6.7 6.7	4.65	1405 1410	26.1 26.1	7.0	5.02 5.09	2000 2005	29.1 29.1	7.1	5.11 5.16	2595 2600	31.5 31.6	7.0	4.97 4.86
225	11.7 11.9	5.5	3.55	820 825	21.7 21.7	6.8	4.80	1415 1420	26.2 26.3	7.0	5.02 4.96	2010 2015	29.1 29.2	7.1	5.15 5.13	2605 2610	31.3 31.4	7.2	5.30 5.15
235	12.1	5.5	3.56	830 835	21.7	6.9	4.85	1425	26.2	7.1	5.10	2020	29.2	7.1	5.18	2615	31.7	6.9	4.88
245	12.3	5.7	3.71	840 845	21.9	6.8	4.80	1435	26.1	7.2	5.24	2030	29.3	7.0	5.05	2625	31.4	7.1	5.17
255	12.5	5.9	3.85	850	21.9	6.9	4.86	1445	26.3	1	5.11	2040	29.3	7.1	5.13	2635	31.8	6.8	4.82
265	12.7	5.5	3.54	860	22.0	6.8	4.80	1455	26.5	7.0	4.98 5.07	2045	29.2	7.2	5.23	2645	31.7	6.9	4.98
270	13.7	5.2	3.39	870	22.0	7.1	4.92 5.11	1465	26.4	7.1	5.17	2055	29.3	7.0	5.02	2655	31.8	6.9	4.85
280 285	13.7 13.7	5.4 5.6	3.50 3.61	875 880	22.0 22.1	7.1	5.08 5.05	1470 1475	26.4 26.4	7.2	5.22 5.17	2065 2070	29.4 29.4	7.1	5.08 5.10	2660 2665	31.7 32.0	7.0 6.7	5.02 4.71
290 295	13.7 13.8	5.7 5.8	3.72 3.77	885 890	22.1 22.1	7.0	5.06 5.06	1480 1485	26.5 26.5	7.1	5.12 5.14	2075 2080	29.5 29.8	7.0 6.8	5.01 4.76	2670 2675	32.0 31.9	6.7 6.8	4.67 4.81
300 305	13.9 14.0	5.8 5.9	3.81 3.85	895 900	22.2 22.2	7.1 7.1	5.09 5.12	1490 1495	26.5 26.5	7.1 7.2	5.17 5.24	2085 2090	29.7 29.7	6.9 6.9	4.89 4.86	2680 2685	31.7 31.9	7.0 6.8	5.04 4.83
310 315	14.1 14.3	5.9 5.9	3.88 3.89	905 910	22.3 22.3	7.1	5.09 5.05	1500 1505	26.5 26.5	7.2	5.31 5.27	2095 2100	29.8 29.9	6.8 6.8	4.78 4.75	2690 2695	32.1 32.1	6.7 6.7	4.72
320 325	14.4 14.5	5.9 5.9	3.90 3.92	915 920	22.4 22.6	7.0 6.9	4.99 4.92	1510 1515	26.6 26.6	7.2	5.23 5.30	2105 2110	29.8 29.9	6.8 6.8	4.81 4.78	2700 2705	32.0 32.0	6.8 6.8	4.81 4.80
330 335	14.6 14.7	5.9 6.0	3.93 4.02	925 930	22.7 22.8	6.9 6.8	4.85	1520 1525	26.5 26.6	7.3 7.3	5.38 5.37	2115 2120	29.9 29.9	6.8 6.8	4.76 4.84	2710 2715	32.1 32.1	6.8 6.7	4.79 4.71
340 345	14.7 14.9	6.2 6.1	4.12 4.06	935 940	22.8 22.8	6.8 6.9	4.83 4.89	1530 1535	26.6 26.6	7.3 7.4	5.36 5.44	2125 2130	29.9 29.9	6.9 6.9	4.89 4.90	2720 2725	32.4 32.2	6.5 6.7	4.47 4.63
350	15.1	6.0	3.99	945	22.8	6.9	4.87	1540	26.5	7.4	5.53	2135	29.8	6.9 7 1	4.94	2730	31.9 31.6	7.0	5.05
360	15.6	5.8	3.78	955	23.0	6.8	4.81	1550	26.5	7.5	5.63	2145	29.9	6.9	4.92	2740	31.6	7.1	5.46
370	15.5	6.0	4.01	965	23.1	6.7	4.73	1560	26.9	7.1	5.16	2155	29.8	7.1	5.10	2750	32.0	6.9	4.94
375	15.7	6.1	4.05	975	23.3	6.6	4.62	1570	26.9	7.2	5.30	2165	29.8	7.0	5.00	2760	32.0	7.0	5.06
385	15.7	6.2	4.15	980	23.5	6.6	4.54	1575	27.0	7.2	5.23	2170	29.9	7.1	5.07	2765	32.2	6.8	4.80
395 400	15.9	6.2	4.22	990 995	23.6	6.5	4.50	1585	27.0	7.2	5.20	2180	29.8 29.8	7.2	5.27	2775	32.3	6.8	4.77
405 410	16.3 16.5	6.1 6.0	4.07 3.96	1000 1005	23.7 23.7	6.5 6.5	4.46 4.51	1595 1600	27.0 27.0	7.2 7.3	5.29 5.36	2190 2195	29.8 29.8	7.2	5.28 5.30	2785 2790	32.7 32.8	6.4 6.3	4.41 4.25
415 420	16.5 16.6	6.0 6.1	4.00 4.03	1010 1015	23.7 23.7	6.6 6.6	4.57 4.55	1605 1610	27.0 27.0	7.3 7.3	5.38 5.41	2200 2205	29.7 29.7	7.3 7.3	5.38 5.41	2795 2800	32.8 32.5	6.4 6.7	4.33 4.66
425 430	16.6 16.7	6.1 6.2	4.10 4.16	1020 1025	23.8 23.8	6.6 6.6	4.54 4.62	1615 1620	27.1 27.2	7.3	5.33 5.27	2210 2215	29.7 29.7	7.4	5.47 5.54	2805 2810	32.5 32.5	6.6 6.7	4.62 4.70
435 440	16.9 17.1	6.1 5.9	4.05 3.93	1030 1035	23.7 23.7	6.7 6.8	4.70 4.81	1625 1630	27.2 27.2	7.2 7.3	5.30 5.33	2220 2225	29.7 29.8	7.5 7.3	5.57 5.43	2815 2820	32.3 32.2	6.9 7.0	4.85 5.01
445 450	17.2 17.2	6.0 6.0	3.97 4.00	1040 1045	23.6 23.7	6.9 6.9	4.92 4.91	1635 1640	27.2 27.2	7.3 7.3	5.35 5.36	2230 2235	29.8 29.7	7.4 7.5	5.45 5.61	2825 2830	32.3 32.4	7.0 6.8	4.96 4.80
455 460	17.3 17.4	6.1 6.1	4.04 4.07	1050 1055	23.7 23.7	6.9 7.0	4.91 5.01	1645 1650	27.3 27.5	7.2	5.22 5.09	2240 2245	29.5 29.8	7.7 7.4	5.86 5.53	2835 2840	32.5 32.5	6.7 6.8	4.68 4.78
465 470	17.5 17.6	6.1 6.1	4.05	1060 1065	23.6 23.7	7.1	5.11 5.06	1655 1660	27.5 27.5	7.1	5.11 5.13	2250 2255	30.0 30.0	7.3	5.35 5.28	2845 2850	32.6 32.6	6.6 6.7	4.62
475 480	17.7	6.0 5.9	3.99	1070 1075	23.8 23.8	7.0	5.01	1665 1670	27.6	7.0	5.06	2260 2265	30.1 30.1	7.2	5.24 5.20	2855 2860	32.4 32.4	6.9 7 0	4.88
485	18.0	5.9	3.88	1080	23.9	7.0	5.01	1675	27.7	7.0	5.02	2270	30.2	7.1	5.12	2865	32.8	6.5	4.52
495	18.0	6.0	4.02	1090	24.0	6.9	4.91	1685	27.7	7.0	5.01	2280	30.0	7.0	5.06	2875	33.0	6.4	4.38
505	17.9	6.3	4.29	1100	24.1	6.8	4.82	1695	27.8	7.0	+.90 5.01	2290	30.3	7.0	5.07	2885	33.0 32.1	6.4	4.40
515	18.1	6.4	4.30	1110	24.3	6.8	4.78	1705	27.8	7.1	5.03	2300	30.3	7.2	5.23	2895	33.1	6.4	4.34
520 525	18.2	6.4	4.32	1115	24.3	6.8	4.79	1/10	27.7	7.1	5.16 5.08	2305	30.3 30.2	7.2	5.20	2900	33.0 32.9	6.6	4.41
530 535	18.3	6.4	4.39	1125 1130	24.3 24.3	6.9 7.0	4.90 5.00	1/20	27.9 28.0	7.0	5.00 4.99	2315 2320	30.1 30.3	7.4	5.45 5.27	2910 2915	32.9 33.1	6.4	4.51
540 545	18.4 18.4	6.4 6.5	4.41 4.47	1135 1140	24.4 24.5	6.9 6.8	4.90 4.81	1730 1735	28.0 28.0	7.0	4.98 5.02	2325 2330	304 30.4	7.2	5.22 5.13	2920 2925	33.3 33.0	6.2 6.5	4.16 4.45
550 555	18.4 18.6	6.6 6.5	4.53 4.45	1145 1150	24.6 24.7	6.8 6.7	4.76 4.71	1740 1745	28.0 28.0	7.1	5.07 5.04	2335 2340	30.5 30.5	7.0 7.1	5.07 5.11	2930 2935	33.0 33.0	6.5 6.5	4.51 4.48
560 565	18.8 18.9	6.4 6.4	4.37 4.33	1155 1160	24.7 24.7	6.8 6.8	4.76 4.80	1750 1755	28.1 27.9	7.0	5.01 5.17	2345 2350	30.6 30.5	7.0	5.07 5.12	2940 2945	33.0 33.1	6.5 6.5	4.52
570 575	19.0 19.1	6.3 6.3	4.28 4.31	1165 1170	24.7 24.7	6.8 6.8	4.81 4.81	1760 1765	27.8 27.9	7.3 7.3	5.34 5.31	2355 2360	30.6 30.9	7.1 6.8	5.08 4.79	2950 2955	33.2 33.3	6.4 6.3	4.32
580 590	19.1 19.1	6.4 6.6	4.33 4.52	1175 1185	24.8 24.8	6.8 6.9	4.84	1770 1780	27.9 27.9	7.2	5.28 5.35	2365 2375	31.0 31.1	6.7 6.6	4.66 4.60	2960 2970	33.3 33.3	6.3 6.4	4.30 4.36
595 600	19.0 19.0	6.6	4.62	1190 1195	24.7 24.7	7.0	4.99	1785	28.1 28.2	7.2	5.21 5.07	2380	31.1 31.1	6.6	4.61	2975	33.0 32.9	6.6 6.8	4.60
610 615	19.1 19.4	6.8 6.5	4.76 4.51	1205 1210	24.08 24.8	7.1	5.08 5.11	1800 1805	28.3 28.3	7.0	5.06 5.07	2395 2400	31.2 30.9	6.6 6.9	4.60 4.93	2990 3000	32.9 33.4	6.8 6.4	4.82 4.33

Antenna factor Double-ridged waveguide horn antenna ETS Lindgren, Model 3117, serial number: 00123515, HL 4114

Francisco Miller	Antenna factor, dB/m								
Frequency, MHZ	Measured	Manufacturer	Deviation						
1000	28.0	28.4	-0.4						
1500	28.0	27.4	0.6						
2000	31.2	30.9	0.3						
2500	32.5	33.4	-0.9						
3000	32.9	32.6	0.3						
3500	32.7	32.8	-0.1						
4000	33.1	33.4	-0.3						
4500	33.8	33.9	-0.1						
5000	33.8	34.1	-0.3						
5500	34.4	34.5	-0.1						
6000	35.0	35.2	-0.2						
6500	35.4	35.5	-0.1						
7000	35.7	35.7	0.0						
7500	35.9	35.7	0.2						
8000	35.8	35.8	0.0						
8500	35.9	35.8	0.1						
9000	36.3	36.2	0.1						
9500	36.6	36.6	0.0						
10000	37.1	37.1	0.0						
10500	37.6	37.5	0.1						
11000	37.9	37.7	0.2						
11500	38.5	38.1	0.4						
12000	39.2	38.7	0.5						
12500	39.0	38.9	0.1						
13000	39.1	39.1	0.0						
13500	38.9	38.8	0.1						
14000	39.0	38.8	0.2						
14500	39.6	39.9	-0.3						
15000	39.9	39.7	0.2						
15500	39.9	40.1	-0.2						
16000	40.7	40.8	-0.1						
16500	41.3	41.8	-0.5						
17000	42.5	42.1	0.4						
17500	41.3	41.2	0.1						
18000	41.4	40.9	0.5						

Antenna factor is to be added to receiver meter reading in $dB(\mu V)$ to convert to field strength in $dB(\mu V)$ meter)

17 APPENDIX F Abbreviations and acronyms

A	ampere
AC	alternating current
AM	amplitude modulation
AVRG	average (detector)
cm	centimeter
dB	decibel
dBm	decibel referred to one milliwatt
dB(μV)	decibel referred to one microvolt
dB(µV/m)	decibel referred to one microvolt per meter
dB(uA)	decibel referred to one microampere
DC	direct current
EIRP	equivalent isotropically radiated power
FRP	effective radiated power
EUT	equipment under test
F	frequency
GHz	ajaahertz
GND	around
H	height
HI	Hermon laboratories
Hz	hertz
k	kilo
kHz	kilohertz
LO	local oscillator
m	meter
MHz	megahertz
min	minute
mm	millimeter
ms	millisecond
μS	microsecond
NA	not applicable
NB	narrow band
OATS	open area test site
Ω	Ohm
PM	pulse modulation
PS	power supply
ppm	part per million (10 ⁻⁶)
QP	quasi-peak
RE	radiated emission
RF	radio frequency
rms	root mean square
Rx	receive
S	second
Т	temperature
Тх	transmit
V	volt
WB	wideband

END OF TEST REPORT

	Declaration of Identity	
We, the undersigned,		
Company: Pointer Telocation In Address: 7715 NW 48th Street, Country: Doral, FL 33166 Telephone number: (305) 903-6	nc Suite 395 634	
declare under our sole respons	bility that the following equipment:	
Brand/Item	Type/Model	Short Product description
CR300B 3G EU	CT7801202-000	Vehicle Tracking equipment w
CR300B 2G	CT7801201-000	Vehicle Tracking equipment wi 2G modem
CR300B 2G CR300 3G EU CR300 2G	CT7801211-000 CT7801206-000 CT7801205-000	enclosure shape Same as above with Different enclosure shape Same as above without interna battery Same as above without interna battery
The reason for name change is	: Marketing purposes	(date)
(company stamp)	IGOR NO. D.9 - D3 - 2016 VP R&D	(signature) (printed name) (position)

18 APPENDIX G Manufacturer's declaration of identity

END OF DOCUMENT